Diagnosis 2.0: Al-Assisted Gleason Group Grading in Prostate Cancer
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PROSTATE CANCER TECHNOLOGY

e According to WHO, there were more than 1.4 million new cases of
prostate cancer in 2020. (1)

e Prostate cancer Is the second most common cancer in men, and It
caused globally more than 375 000 deaths in 2020. (1)

e Early intervention based on correct characterization of the tumor Is a
key element of treatment planning and survival. (2)
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Computational pathology and artificial intelligence (Al)-based tools have
enabled the objective diagnosis of whole slide images (WSIs) along with
the access to necessary clinical information and case-related images. The
current gold standard for prostate cancer management, Gleason grading,
IS under constant development, and its limitations underline the need for
more standardized and objective analysis tools. Al-assisted approaches
offer the possibility to augment pathologists capabilities and support their

diagnostic workflow.

CLINICAL PERFORMANCE EVALUATION

e 509 TMA slides and 774 biopsy slides from EU (3) and US (4) used for
training an Al model consisting of two separate convolutional neural
networks (CNNs) for semantic segmentation of

o Tissue layer (655 annotations)
o Gleason grades benign, G3, G4 and G5 (6745 annotations)
e Validation set of 111 prostate tissue WSIs analyzed by 3 pathologists
o Without the assistance of the Al model (Visual Dx, reference)
o With the assistance of the Al model (Al-assisted Dx)

CLINICAL PERFORMANCE EVALUATION RESULTS
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MORE RESULTS BENEFITS OF Al-ASSISTED ANALYSIS CONCLUSIONS

e The model can predict positive observations with 96.8 7% recall ratio
for the combined dataset, ranging from 93 to 100 % for individual
pathologists. Precision ranged from 86.9 to 93.9 7% per pathologists,

neing 89.8 for the combined dataset. Overall accuracy (F1) ranged

from 89.8 to 96.6 % per pathologist, being 93.2 7% on average.

e The reliability of agreement between Visual Dx and Al-assisted Dx was
0.846 (Cohen's weighed kappa) for the combined dataset, and the
range for pathologists was 0.7/88-0.8/8.

e Time spent for Gleason pattern analysis per slide was significantly
reduced during Al-assisted Dx; on average each slide took 347% less
time (p < 0.05).
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e Al-assisted Gleason grading is very well in concordance with the
analysis performed without its assistance.

e The Al methodology reduced the needed time for grading by 34 %
versus eyeballing method.

e With digital tools and automated workflow the increasing burden of
prostate diagnostics may be reduced significantly.

e Performance will be further investigated with third-party clinical
performance evaluations at real-world settings.
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